Variational Formulation and Numerical Analysis of Linear Elliptic Equations in Nondivergence form with Cordes Coefficients

نویسنده

  • Dietmar Gallistl
چکیده

This paper studies formulations of second-order elliptic partial differential equations in nondivergence form on convex domains as equivalent variational problems. The first formulation is that of Smears and Süli [SIAM J. Numer. Anal., 51 (2013), pp. 2088–2106], and the second one is a new symmetric formulation based on a least-squares functional. These formulations enable the use of standard finite element techniques for variational problems in subspaces of H2 as well as mixed finite element methods from the context of fluid computations. Besides the immediate quasi-optimal a priori error bounds, the variational setting allows for a posteriori error control with explicit constants and adaptive mesh-refinement. The convergence of an adaptive algorithm is proved. Numerical results on uniform and adaptive meshes are included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Finite Element Approximation of Nondivergence Form Elliptic Equations with Cordès Coefficients

Abstract. Non-divergence form elliptic equations with discontinuous coefficients do not generally posses a weak formulation, thus presenting an obstacle to their numerical solution by classical finite element methods. We propose a new hp-version discontinuous Galerkin finite element method for a class of these problems that satisfy the Cordès condition. It is shown that the method exhibits a co...

متن کامل

Numerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (‎MLRPI)

In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...

متن کامل

Second-order Elliptic and Parabolic Equations with B(r, V Mo) Coefficients

The solvability in Sobolev spaces W 1,2 p is proved for nondivergence form second order parabolic equations for p > 2 close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, and almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the W 2 p -solvability for the same p of nondivergence f...

متن کامل

The Dirichlet Problem for Elliptic Equations with Drift Terms

We establish absolute continuity of the elliptic measure associated to certain second order elliptic equations in either divergence or nondivergence form, with drift terms, under minimal smoothness assumptions on the coefficients.

متن کامل

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2017